Metamath Proof Explorer


Theorem cnpart

Description: The specification of restriction to the right half-plane partitions the complex plane without 0 into two disjoint pieces, which are related by a reflection about the origin (under the map x |-> -u x ). (Contributed by Mario Carneiro, 8-Jul-2013)

Ref Expression
Assertion cnpart A A 0 0 A i A + ¬ 0 A i A +

Proof

Step Hyp Ref Expression
1 df-nel i A + ¬ i A +
2 simpr A A 0 A = 0 A = 0
3 0le0 0 0
4 2 3 eqbrtrdi A A 0 A = 0 A 0
5 4 biantrurd A A 0 A = 0 i A + A 0 i A +
6 1 5 bitr3id A A 0 A = 0 ¬ i A + A 0 i A +
7 6 con1bid A A 0 A = 0 ¬ A 0 i A + i A +
8 ax-icn i
9 mulcl i A i A
10 8 9 mpan A i A
11 reim0b i A i A i A = 0
12 10 11 syl A i A i A = 0
13 imre i A i A = i i A
14 10 13 syl A i A = i i A
15 ine0 i 0
16 divrec2 i A i i 0 i A i = 1 i i A
17 8 15 16 mp3an23 i A i A i = 1 i i A
18 10 17 syl A i A i = 1 i i A
19 irec 1 i = i
20 19 oveq1i 1 i i A = i i A
21 18 20 eqtrdi A i A i = i i A
22 divcan3 A i i 0 i A i = A
23 8 15 22 mp3an23 A i A i = A
24 21 23 eqtr3d A i i A = A
25 24 fveq2d A i i A = A
26 14 25 eqtrd A i A = A
27 26 eqeq1d A i A = 0 A = 0
28 12 27 bitrd A i A A = 0
29 28 biimpar A A = 0 i A
30 29 adantlr A A 0 A = 0 i A
31 mulne0 i i 0 A A 0 i A 0
32 8 15 31 mpanl12 A A 0 i A 0
33 32 adantr A A 0 A = 0 i A 0
34 rpneg i A i A 0 i A + ¬ i A +
35 30 33 34 syl2anc A A 0 A = 0 i A + ¬ i A +
36 35 con2bid A A 0 A = 0 i A + ¬ i A +
37 df-nel i A + ¬ i A +
38 36 37 bitr4di A A 0 A = 0 i A + i A +
39 3 2 breqtrrid A A 0 A = 0 0 A
40 39 biantrurd A A 0 A = 0 i A + 0 A i A +
41 7 38 40 3bitrrd A A 0 A = 0 0 A i A + ¬ A 0 i A +
42 28 adantr A A 0 i A A = 0
43 42 necon3bbid A A 0 ¬ i A A 0
44 43 biimpar A A 0 A 0 ¬ i A
45 rpre i A + i A
46 44 45 nsyl A A 0 A 0 ¬ i A +
47 46 37 sylibr A A 0 A 0 i A +
48 47 biantrud A A 0 A 0 0 A 0 A i A +
49 simpr A A 0 A 0 A 0
50 49 biantrud A A 0 A 0 0 A 0 A A 0
51 0re 0
52 recl A A
53 ltlen 0 A 0 < A 0 A A 0
54 ltnle 0 A 0 < A ¬ A 0
55 53 54 bitr3d 0 A 0 A A 0 ¬ A 0
56 51 52 55 sylancr A 0 A A 0 ¬ A 0
57 56 ad2antrr A A 0 A 0 0 A A 0 ¬ A 0
58 50 57 bitrd A A 0 A 0 0 A ¬ A 0
59 48 58 bitr3d A A 0 A 0 0 A i A + ¬ A 0
60 renegcl i A i A
61 10 negnegd A i A = i A
62 61 eleq1d A i A i A
63 62 ad2antrr A A 0 A 0 i A i A
64 60 63 syl5ib A A 0 A 0 i A i A
65 44 64 mtod A A 0 A 0 ¬ i A
66 rpre i A + i A
67 65 66 nsyl A A 0 A 0 ¬ i A +
68 67 1 sylibr A A 0 A 0 i A +
69 68 biantrud A A 0 A 0 A 0 A 0 i A +
70 69 notbid A A 0 A 0 ¬ A 0 ¬ A 0 i A +
71 59 70 bitrd A A 0 A 0 0 A i A + ¬ A 0 i A +
72 41 71 pm2.61dane A A 0 0 A i A + ¬ A 0 i A +
73 reneg A A = A
74 73 breq2d A 0 A 0 A
75 52 le0neg1d A A 0 0 A
76 74 75 bitr4d A 0 A A 0
77 mulneg2 i A i A = i A
78 8 77 mpan A i A = i A
79 neleq1 i A = i A i A + i A +
80 78 79 syl A i A + i A +
81 76 80 anbi12d A 0 A i A + A 0 i A +
82 81 notbid A ¬ 0 A i A + ¬ A 0 i A +
83 82 adantr A A 0 ¬ 0 A i A + ¬ A 0 i A +
84 72 83 bitr4d A A 0 0 A i A + ¬ 0 A i A +