Metamath Proof Explorer


Theorem sqrtval

Description: Value of square root function. (Contributed by Mario Carneiro, 8-Jul-2013)

Ref Expression
Assertion sqrtval AA=ιx|x2=A0xix+

Proof

Step Hyp Ref Expression
1 eqeq2 y=Ax2=yx2=A
2 1 3anbi1d y=Ax2=y0xix+x2=A0xix+
3 2 riotabidv y=Aιx|x2=y0xix+=ιx|x2=A0xix+
4 df-sqrt =yιx|x2=y0xix+
5 riotaex ιx|x2=A0xix+V
6 3 4 5 fvmpt AA=ιx|x2=A0xix+