Metamath Proof Explorer


Theorem srgridm

Description: The unity element of a semiring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgidm.b B=BaseR
srgidm.t ·˙=R
srgidm.u 1˙=1R
Assertion srgridm RSRingXBX·˙1˙=X

Proof

Step Hyp Ref Expression
1 srgidm.b B=BaseR
2 srgidm.t ·˙=R
3 srgidm.u 1˙=1R
4 1 2 3 srgidmlem RSRingXB1˙·˙X=XX·˙1˙=X
5 4 simprd RSRingXBX·˙1˙=X