Metamath Proof Explorer


Theorem ss2abdvALT

Description: Alternate proof of ss2abdv . Shorter, but requiring ax-8 . (Contributed by Steven Nguyen, 28-Jun-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ss2abdvALT.1 φψχ
Assertion ss2abdvALT φx|ψx|χ

Proof

Step Hyp Ref Expression
1 ss2abdvALT.1 φψχ
2 1 sbimdv φyxψyxχ
3 df-clab yx|ψyxψ
4 df-clab yx|χyxχ
5 2 3 4 3imtr4g φyx|ψyx|χ
6 5 ssrdv φx|ψx|χ