Metamath Proof Explorer


Theorem ss2rabdvOLD

Description: Obsolete version of ss2rabdv as of 1-Feb-2026. (Contributed by NM, 30-May-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ss2rabdv.1 φ x A ψ χ
Assertion ss2rabdvOLD φ x A | ψ x A | χ

Proof

Step Hyp Ref Expression
1 ss2rabdv.1 φ x A ψ χ
2 1 ralrimiva φ x A ψ χ
3 ss2rab x A | ψ x A | χ x A ψ χ
4 2 3 sylibr φ x A | ψ x A | χ