Metamath Proof Explorer


Theorem ss2rabdvOLD

Description: Obsolete version of ss2rabdv as of 1-Feb-2026. (Contributed by NM, 30-May-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ss2rabdv.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion ss2rabdvOLD ( 𝜑 → { 𝑥𝐴𝜓 } ⊆ { 𝑥𝐴𝜒 } )

Proof

Step Hyp Ref Expression
1 ss2rabdv.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
2 1 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 ( 𝜓𝜒 ) )
3 ss2rab ( { 𝑥𝐴𝜓 } ⊆ { 𝑥𝐴𝜒 } ↔ ∀ 𝑥𝐴 ( 𝜓𝜒 ) )
4 2 3 sylibr ( 𝜑 → { 𝑥𝐴𝜓 } ⊆ { 𝑥𝐴𝜒 } )