Metamath Proof Explorer


Theorem ssdmd2

Description: Ordering implies the dual modular pair property. Remark in MaedaMaeda p. 1. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion ssdmd2 ACBCABB𝑀A

Proof

Step Hyp Ref Expression
1 chsscon3 ACBCABBA
2 choccl BCBC
3 choccl ACAC
4 ssmd1 BCACBAB𝑀A
5 4 3expia BCACBAB𝑀A
6 2 3 5 syl2anr ACBCBAB𝑀A
7 1 6 sylbid ACBCABB𝑀A
8 7 3impia ACBCABB𝑀A