Metamath Proof Explorer


Theorem dmdsl3

Description: Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of MaedaMaeda p. 2. (Contributed by NM, 26-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion dmdsl3 ACBCCCB𝑀*AACCABCBA=C

Proof

Step Hyp Ref Expression
1 dmdi BCACCCB𝑀*AACCBA=CBA
2 1 exp32 BCACCCB𝑀*AACCBA=CBA
3 2 3com12 ACBCCCB𝑀*AACCBA=CBA
4 3 imp32 ACBCCCB𝑀*AACCBA=CBA
5 4 3adantr3 ACBCCCB𝑀*AACCABCBA=CBA
6 chjcom ACBCAB=BA
7 6 ineq2d ACBCCAB=CBA
8 7 3adant3 ACBCCCCAB=CBA
9 df-ss CABCAB=C
10 9 biimpi CABCAB=C
11 8 10 sylan9req ACBCCCCABCBA=C
12 11 3ad2antr3 ACBCCCB𝑀*AACCABCBA=C
13 5 12 eqtrd ACBCCCB𝑀*AACCABCBA=C