| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmdi | ⊢ ( ( ( 𝐵  ∈   Cℋ   ∧  𝐴  ∈   Cℋ   ∧  𝐶  ∈   Cℋ  )  ∧  ( 𝐵  𝑀ℋ*  𝐴  ∧  𝐴  ⊆  𝐶 ) )  →  ( ( 𝐶  ∩  𝐵 )  ∨ℋ  𝐴 )  =  ( 𝐶  ∩  ( 𝐵  ∨ℋ  𝐴 ) ) ) | 
						
							| 2 | 1 | exp32 | ⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝐴  ∈   Cℋ   ∧  𝐶  ∈   Cℋ  )  →  ( 𝐵  𝑀ℋ*  𝐴  →  ( 𝐴  ⊆  𝐶  →  ( ( 𝐶  ∩  𝐵 )  ∨ℋ  𝐴 )  =  ( 𝐶  ∩  ( 𝐵  ∨ℋ  𝐴 ) ) ) ) ) | 
						
							| 3 | 2 | 3com12 | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ   ∧  𝐶  ∈   Cℋ  )  →  ( 𝐵  𝑀ℋ*  𝐴  →  ( 𝐴  ⊆  𝐶  →  ( ( 𝐶  ∩  𝐵 )  ∨ℋ  𝐴 )  =  ( 𝐶  ∩  ( 𝐵  ∨ℋ  𝐴 ) ) ) ) ) | 
						
							| 4 | 3 | imp32 | ⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ   ∧  𝐶  ∈   Cℋ  )  ∧  ( 𝐵  𝑀ℋ*  𝐴  ∧  𝐴  ⊆  𝐶 ) )  →  ( ( 𝐶  ∩  𝐵 )  ∨ℋ  𝐴 )  =  ( 𝐶  ∩  ( 𝐵  ∨ℋ  𝐴 ) ) ) | 
						
							| 5 | 4 | 3adantr3 | ⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ   ∧  𝐶  ∈   Cℋ  )  ∧  ( 𝐵  𝑀ℋ*  𝐴  ∧  𝐴  ⊆  𝐶  ∧  𝐶  ⊆  ( 𝐴  ∨ℋ  𝐵 ) ) )  →  ( ( 𝐶  ∩  𝐵 )  ∨ℋ  𝐴 )  =  ( 𝐶  ∩  ( 𝐵  ∨ℋ  𝐴 ) ) ) | 
						
							| 6 |  | chjcom | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ∨ℋ  𝐵 )  =  ( 𝐵  ∨ℋ  𝐴 ) ) | 
						
							| 7 | 6 | ineq2d | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐶  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  =  ( 𝐶  ∩  ( 𝐵  ∨ℋ  𝐴 ) ) ) | 
						
							| 8 | 7 | 3adant3 | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ   ∧  𝐶  ∈   Cℋ  )  →  ( 𝐶  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  =  ( 𝐶  ∩  ( 𝐵  ∨ℋ  𝐴 ) ) ) | 
						
							| 9 |  | dfss2 | ⊢ ( 𝐶  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ↔  ( 𝐶  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  =  𝐶 ) | 
						
							| 10 | 9 | biimpi | ⊢ ( 𝐶  ⊆  ( 𝐴  ∨ℋ  𝐵 )  →  ( 𝐶  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  =  𝐶 ) | 
						
							| 11 | 8 10 | sylan9req | ⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ   ∧  𝐶  ∈   Cℋ  )  ∧  𝐶  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  →  ( 𝐶  ∩  ( 𝐵  ∨ℋ  𝐴 ) )  =  𝐶 ) | 
						
							| 12 | 11 | 3ad2antr3 | ⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ   ∧  𝐶  ∈   Cℋ  )  ∧  ( 𝐵  𝑀ℋ*  𝐴  ∧  𝐴  ⊆  𝐶  ∧  𝐶  ⊆  ( 𝐴  ∨ℋ  𝐵 ) ) )  →  ( 𝐶  ∩  ( 𝐵  ∨ℋ  𝐴 ) )  =  𝐶 ) | 
						
							| 13 | 5 12 | eqtrd | ⊢ ( ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ   ∧  𝐶  ∈   Cℋ  )  ∧  ( 𝐵  𝑀ℋ*  𝐴  ∧  𝐴  ⊆  𝐶  ∧  𝐶  ⊆  ( 𝐴  ∨ℋ  𝐵 ) ) )  →  ( ( 𝐶  ∩  𝐵 )  ∨ℋ  𝐴 )  =  𝐶 ) |