| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmdi |
|- ( ( ( B e. CH /\ A e. CH /\ C e. CH ) /\ ( B MH* A /\ A C_ C ) ) -> ( ( C i^i B ) vH A ) = ( C i^i ( B vH A ) ) ) |
| 2 |
1
|
exp32 |
|- ( ( B e. CH /\ A e. CH /\ C e. CH ) -> ( B MH* A -> ( A C_ C -> ( ( C i^i B ) vH A ) = ( C i^i ( B vH A ) ) ) ) ) |
| 3 |
2
|
3com12 |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( B MH* A -> ( A C_ C -> ( ( C i^i B ) vH A ) = ( C i^i ( B vH A ) ) ) ) ) |
| 4 |
3
|
imp32 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B MH* A /\ A C_ C ) ) -> ( ( C i^i B ) vH A ) = ( C i^i ( B vH A ) ) ) |
| 5 |
4
|
3adantr3 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B MH* A /\ A C_ C /\ C C_ ( A vH B ) ) ) -> ( ( C i^i B ) vH A ) = ( C i^i ( B vH A ) ) ) |
| 6 |
|
chjcom |
|- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) = ( B vH A ) ) |
| 7 |
6
|
ineq2d |
|- ( ( A e. CH /\ B e. CH ) -> ( C i^i ( A vH B ) ) = ( C i^i ( B vH A ) ) ) |
| 8 |
7
|
3adant3 |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( C i^i ( A vH B ) ) = ( C i^i ( B vH A ) ) ) |
| 9 |
|
dfss2 |
|- ( C C_ ( A vH B ) <-> ( C i^i ( A vH B ) ) = C ) |
| 10 |
9
|
biimpi |
|- ( C C_ ( A vH B ) -> ( C i^i ( A vH B ) ) = C ) |
| 11 |
8 10
|
sylan9req |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ C C_ ( A vH B ) ) -> ( C i^i ( B vH A ) ) = C ) |
| 12 |
11
|
3ad2antr3 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B MH* A /\ A C_ C /\ C C_ ( A vH B ) ) ) -> ( C i^i ( B vH A ) ) = C ) |
| 13 |
5 12
|
eqtrd |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B MH* A /\ A C_ C /\ C C_ ( A vH B ) ) ) -> ( ( C i^i B ) vH A ) = C ) |