Metamath Proof Explorer


Theorem sseq0

Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion sseq0 ABB=A=

Proof

Step Hyp Ref Expression
1 sseq2 B=ABA
2 ss0 AA=
3 1 2 syl6bi B=ABA=
4 3 impcom ABB=A=