Metamath Proof Explorer


Theorem sseqtrdi

Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses sseqtrdi.1 φAB
sseqtrdi.2 B=C
Assertion sseqtrdi φAC

Proof

Step Hyp Ref Expression
1 sseqtrdi.1 φAB
2 sseqtrdi.2 B=C
3 2 sseq2i ABAC
4 1 3 sylib φAC