Metamath Proof Explorer


Theorem ssfz12

Description: Subset relationship for finite sets of sequential integers. (Contributed by Alexander van der Vekens, 16-Mar-2018)

Ref Expression
Assertion ssfz12 KLKLKLMNMKLN

Proof

Step Hyp Ref Expression
1 eluz KLLKKL
2 1 biimp3ar KLKLLK
3 eluzfz1 LKKKL
4 2 3 syl KLKLKKL
5 eluzfz2 LKLKL
6 2 5 syl KLKLLKL
7 ssel2 KLMNKKLKMN
8 ssel2 KLMNLKLLMN
9 elfzuz3 LMNNL
10 eluz2 KMMKMK
11 eluz2 NLLNLN
12 pm3.21 LNMKMKLN
13 12 3ad2ant3 LNLNMKMKLN
14 11 13 sylbi NLMKMKLN
15 14 a1i KLKLNLMKMKLN
16 15 com13 MKNLKLKLMKLN
17 16 3ad2ant3 MKMKNLKLKLMKLN
18 10 17 sylbi KMNLKLKLMKLN
19 elfzuz KMNKM
20 18 19 syl11 NLKMNKLKLMKLN
21 8 9 20 3syl KLMNLKLKMNKLKLMKLN
22 21 ex KLMNLKLKMNKLKLMKLN
23 22 com4t KMNKLKLKLMNLKLMKLN
24 7 23 syl KLMNKKLKLKLKLMNLKLMKLN
25 24 ex KLMNKKLKLKLKLMNLKLMKLN
26 25 com24 KLMNKLMNKLKLKKLLKLMKLN
27 26 pm2.43i KLMNKLKLKKLLKLMKLN
28 27 com14 LKLKLKLKKLKLMNMKLN
29 6 28 mpcom KLKLKKLKLMNMKLN
30 4 29 mpd KLKLKLMNMKLN