Metamath Proof Explorer


Theorem ssfz12

Description: Subset relationship for finite sets of sequential integers. (Contributed by Alexander van der Vekens, 16-Mar-2018)

Ref Expression
Assertion ssfz12 K L K L K L M N M K L N

Proof

Step Hyp Ref Expression
1 eluz K L L K K L
2 1 biimp3ar K L K L L K
3 eluzfz1 L K K K L
4 2 3 syl K L K L K K L
5 eluzfz2 L K L K L
6 2 5 syl K L K L L K L
7 ssel2 K L M N K K L K M N
8 ssel2 K L M N L K L L M N
9 elfzuz3 L M N N L
10 eluz2 K M M K M K
11 eluz2 N L L N L N
12 pm3.21 L N M K M K L N
13 12 3ad2ant3 L N L N M K M K L N
14 11 13 sylbi N L M K M K L N
15 14 a1i K L K L N L M K M K L N
16 15 com13 M K N L K L K L M K L N
17 16 3ad2ant3 M K M K N L K L K L M K L N
18 10 17 sylbi K M N L K L K L M K L N
19 elfzuz K M N K M
20 18 19 syl11 N L K M N K L K L M K L N
21 8 9 20 3syl K L M N L K L K M N K L K L M K L N
22 21 ex K L M N L K L K M N K L K L M K L N
23 22 com4t K M N K L K L K L M N L K L M K L N
24 7 23 syl K L M N K K L K L K L K L M N L K L M K L N
25 24 ex K L M N K K L K L K L K L M N L K L M K L N
26 25 com24 K L M N K L M N K L K L K K L L K L M K L N
27 26 pm2.43i K L M N K L K L K K L L K L M K L N
28 27 com14 L K L K L K L K K L K L M N M K L N
29 6 28 mpcom K L K L K K L K L M N M K L N
30 4 29 mpd K L K L K L M N M K L N