Metamath Proof Explorer


Theorem elfz2z

Description: Membership of an integer in a finite set of sequential integers starting at 0. (Contributed by Alexander van der Vekens, 25-May-2018)

Ref Expression
Assertion elfz2z K N K 0 N 0 K K N

Proof

Step Hyp Ref Expression
1 elfz2nn0 K 0 N K 0 N 0 K N
2 df-3an K 0 N 0 K N K 0 N 0 K N
3 1 2 bitri K 0 N K 0 N 0 K N
4 nn0ge0 K 0 0 K
5 4 adantr K 0 N 0 0 K
6 simpll K N K N K
7 6 anim1i K N K N 0 K K 0 K
8 elnn0z K 0 K 0 K
9 7 8 sylibr K N K N 0 K K 0
10 0red K N 0
11 zre K K
12 11 adantr K N K
13 zre N N
14 13 adantl K N N
15 letr 0 K N 0 K K N 0 N
16 10 12 14 15 syl3anc K N 0 K K N 0 N
17 elnn0z N 0 N 0 N
18 17 simplbi2 N 0 N N 0
19 18 adantl K N 0 N N 0
20 16 19 syld K N 0 K K N N 0
21 20 expcomd K N K N 0 K N 0
22 21 imp31 K N K N 0 K N 0
23 9 22 jca K N K N 0 K K 0 N 0
24 23 ex K N K N 0 K K 0 N 0
25 5 24 impbid2 K N K N K 0 N 0 0 K
26 25 ex K N K N K 0 N 0 0 K
27 26 pm5.32rd K N K 0 N 0 K N 0 K K N
28 3 27 syl5bb K N K 0 N 0 K K N