Metamath Proof Explorer


Theorem 2elfz3nn0

Description: If there are two elements in a finite set of sequential integers starting at 0, these two elements as well as the upper bound are nonnegative integers. (Contributed by Alexander van der Vekens, 7-Apr-2018)

Ref Expression
Assertion 2elfz3nn0 A 0 N B 0 N A 0 B 0 N 0

Proof

Step Hyp Ref Expression
1 elfznn0 A 0 N A 0
2 elfz2nn0 B 0 N B 0 N 0 B N
3 3anass A 0 B 0 N 0 A 0 B 0 N 0
4 3 simplbi2com B 0 N 0 A 0 A 0 B 0 N 0
5 4 3adant3 B 0 N 0 B N A 0 A 0 B 0 N 0
6 2 5 sylbi B 0 N A 0 A 0 B 0 N 0
7 1 6 mpan9 A 0 N B 0 N A 0 B 0 N 0