Metamath Proof Explorer


Theorem 2elfz3nn0

Description: If there are two elements in a finite set of sequential integers starting at 0, these two elements as well as the upper bound are nonnegative integers. (Contributed by Alexander van der Vekens, 7-Apr-2018)

Ref Expression
Assertion 2elfz3nn0
|- ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) -> ( A e. NN0 /\ B e. NN0 /\ N e. NN0 ) )

Proof

Step Hyp Ref Expression
1 elfznn0
 |-  ( A e. ( 0 ... N ) -> A e. NN0 )
2 elfz2nn0
 |-  ( B e. ( 0 ... N ) <-> ( B e. NN0 /\ N e. NN0 /\ B <_ N ) )
3 3anass
 |-  ( ( A e. NN0 /\ B e. NN0 /\ N e. NN0 ) <-> ( A e. NN0 /\ ( B e. NN0 /\ N e. NN0 ) ) )
4 3 simplbi2com
 |-  ( ( B e. NN0 /\ N e. NN0 ) -> ( A e. NN0 -> ( A e. NN0 /\ B e. NN0 /\ N e. NN0 ) ) )
5 4 3adant3
 |-  ( ( B e. NN0 /\ N e. NN0 /\ B <_ N ) -> ( A e. NN0 -> ( A e. NN0 /\ B e. NN0 /\ N e. NN0 ) ) )
6 2 5 sylbi
 |-  ( B e. ( 0 ... N ) -> ( A e. NN0 -> ( A e. NN0 /\ B e. NN0 /\ N e. NN0 ) ) )
7 1 6 mpan9
 |-  ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) -> ( A e. NN0 /\ B e. NN0 /\ N e. NN0 ) )