Metamath Proof Explorer


Theorem fz0addcom

Description: The addition of two members of a finite set of sequential integers starting at 0 is commutative. (Contributed by Alexander van der Vekens, 22-May-2018) (Revised by Alexander van der Vekens, 9-Jun-2018)

Ref Expression
Assertion fz0addcom
|- ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) -> ( A + B ) = ( B + A ) )

Proof

Step Hyp Ref Expression
1 elfznn0
 |-  ( A e. ( 0 ... N ) -> A e. NN0 )
2 1 nn0cnd
 |-  ( A e. ( 0 ... N ) -> A e. CC )
3 elfznn0
 |-  ( B e. ( 0 ... N ) -> B e. NN0 )
4 3 nn0cnd
 |-  ( B e. ( 0 ... N ) -> B e. CC )
5 addcom
 |-  ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) )
6 2 4 5 syl2an
 |-  ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) -> ( A + B ) = ( B + A ) )