| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzelz |
|- ( A e. ( 0 ... N ) -> A e. ZZ ) |
| 2 |
|
elfzel2 |
|- ( B e. ( 0 ... N ) -> N e. ZZ ) |
| 3 |
|
elfzelz |
|- ( B e. ( 0 ... N ) -> B e. ZZ ) |
| 4 |
|
simplr |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> B e. ZZ ) |
| 5 |
|
zsubcl |
|- ( ( N e. ZZ /\ A e. ZZ ) -> ( N - A ) e. ZZ ) |
| 6 |
5
|
adantlr |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> ( N - A ) e. ZZ ) |
| 7 |
4 6
|
zsubcld |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> ( B - ( N - A ) ) e. ZZ ) |
| 8 |
7
|
adantr |
|- ( ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) /\ N < ( A + B ) ) -> ( B - ( N - A ) ) e. ZZ ) |
| 9 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 10 |
9
|
ad2antrr |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> N e. RR ) |
| 11 |
|
zaddcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ ) |
| 12 |
11
|
zred |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. RR ) |
| 13 |
12
|
expcom |
|- ( B e. ZZ -> ( A e. ZZ -> ( A + B ) e. RR ) ) |
| 14 |
13
|
adantl |
|- ( ( N e. ZZ /\ B e. ZZ ) -> ( A e. ZZ -> ( A + B ) e. RR ) ) |
| 15 |
14
|
imp |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> ( A + B ) e. RR ) |
| 16 |
10 15 10
|
ltsub1d |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> ( N < ( A + B ) <-> ( N - N ) < ( ( A + B ) - N ) ) ) |
| 17 |
|
zre |
|- ( B e. ZZ -> B e. RR ) |
| 18 |
9 17
|
anim12i |
|- ( ( N e. ZZ /\ B e. ZZ ) -> ( N e. RR /\ B e. RR ) ) |
| 19 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
| 20 |
18 19
|
anim12i |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> ( ( N e. RR /\ B e. RR ) /\ A e. RR ) ) |
| 21 |
|
id |
|- ( N e. RR -> N e. RR ) |
| 22 |
21 21
|
resubcld |
|- ( N e. RR -> ( N - N ) e. RR ) |
| 23 |
22
|
ad2antrr |
|- ( ( ( N e. RR /\ B e. RR ) /\ A e. RR ) -> ( N - N ) e. RR ) |
| 24 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
| 25 |
24
|
expcom |
|- ( B e. RR -> ( A e. RR -> ( A + B ) e. RR ) ) |
| 26 |
25
|
adantl |
|- ( ( N e. RR /\ B e. RR ) -> ( A e. RR -> ( A + B ) e. RR ) ) |
| 27 |
26
|
imp |
|- ( ( ( N e. RR /\ B e. RR ) /\ A e. RR ) -> ( A + B ) e. RR ) |
| 28 |
|
simpll |
|- ( ( ( N e. RR /\ B e. RR ) /\ A e. RR ) -> N e. RR ) |
| 29 |
27 28
|
resubcld |
|- ( ( ( N e. RR /\ B e. RR ) /\ A e. RR ) -> ( ( A + B ) - N ) e. RR ) |
| 30 |
23 29
|
jca |
|- ( ( ( N e. RR /\ B e. RR ) /\ A e. RR ) -> ( ( N - N ) e. RR /\ ( ( A + B ) - N ) e. RR ) ) |
| 31 |
|
ltle |
|- ( ( ( N - N ) e. RR /\ ( ( A + B ) - N ) e. RR ) -> ( ( N - N ) < ( ( A + B ) - N ) -> ( N - N ) <_ ( ( A + B ) - N ) ) ) |
| 32 |
20 30 31
|
3syl |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> ( ( N - N ) < ( ( A + B ) - N ) -> ( N - N ) <_ ( ( A + B ) - N ) ) ) |
| 33 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 34 |
33
|
subidd |
|- ( N e. ZZ -> ( N - N ) = 0 ) |
| 35 |
34
|
ad2antrr |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> ( N - N ) = 0 ) |
| 36 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
| 37 |
36
|
adantl |
|- ( ( N e. ZZ /\ B e. ZZ ) -> B e. CC ) |
| 38 |
37
|
adantr |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> B e. CC ) |
| 39 |
33
|
ad2antrr |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> N e. CC ) |
| 40 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
| 41 |
40
|
adantl |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> A e. CC ) |
| 42 |
|
simp3 |
|- ( ( B e. CC /\ N e. CC /\ A e. CC ) -> A e. CC ) |
| 43 |
|
simp1 |
|- ( ( B e. CC /\ N e. CC /\ A e. CC ) -> B e. CC ) |
| 44 |
42 43
|
addcomd |
|- ( ( B e. CC /\ N e. CC /\ A e. CC ) -> ( A + B ) = ( B + A ) ) |
| 45 |
44
|
oveq1d |
|- ( ( B e. CC /\ N e. CC /\ A e. CC ) -> ( ( A + B ) - N ) = ( ( B + A ) - N ) ) |
| 46 |
|
subsub3 |
|- ( ( B e. CC /\ N e. CC /\ A e. CC ) -> ( B - ( N - A ) ) = ( ( B + A ) - N ) ) |
| 47 |
45 46
|
eqtr4d |
|- ( ( B e. CC /\ N e. CC /\ A e. CC ) -> ( ( A + B ) - N ) = ( B - ( N - A ) ) ) |
| 48 |
38 39 41 47
|
syl3anc |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> ( ( A + B ) - N ) = ( B - ( N - A ) ) ) |
| 49 |
35 48
|
breq12d |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> ( ( N - N ) <_ ( ( A + B ) - N ) <-> 0 <_ ( B - ( N - A ) ) ) ) |
| 50 |
32 49
|
sylibd |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> ( ( N - N ) < ( ( A + B ) - N ) -> 0 <_ ( B - ( N - A ) ) ) ) |
| 51 |
16 50
|
sylbid |
|- ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) -> ( N < ( A + B ) -> 0 <_ ( B - ( N - A ) ) ) ) |
| 52 |
51
|
imp |
|- ( ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) /\ N < ( A + B ) ) -> 0 <_ ( B - ( N - A ) ) ) |
| 53 |
|
elnn0z |
|- ( ( B - ( N - A ) ) e. NN0 <-> ( ( B - ( N - A ) ) e. ZZ /\ 0 <_ ( B - ( N - A ) ) ) ) |
| 54 |
8 52 53
|
sylanbrc |
|- ( ( ( ( N e. ZZ /\ B e. ZZ ) /\ A e. ZZ ) /\ N < ( A + B ) ) -> ( B - ( N - A ) ) e. NN0 ) |
| 55 |
54
|
exp31 |
|- ( ( N e. ZZ /\ B e. ZZ ) -> ( A e. ZZ -> ( N < ( A + B ) -> ( B - ( N - A ) ) e. NN0 ) ) ) |
| 56 |
2 3 55
|
syl2anc |
|- ( B e. ( 0 ... N ) -> ( A e. ZZ -> ( N < ( A + B ) -> ( B - ( N - A ) ) e. NN0 ) ) ) |
| 57 |
1 56
|
mpan9 |
|- ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) -> ( N < ( A + B ) -> ( B - ( N - A ) ) e. NN0 ) ) |
| 58 |
57
|
imp |
|- ( ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) /\ N < ( A + B ) ) -> ( B - ( N - A ) ) e. NN0 ) |
| 59 |
|
elfznn0 |
|- ( A e. ( 0 ... N ) -> A e. NN0 ) |
| 60 |
59
|
ad2antrr |
|- ( ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) /\ N < ( A + B ) ) -> A e. NN0 ) |
| 61 |
|
elfzle2 |
|- ( B e. ( 0 ... N ) -> B <_ N ) |
| 62 |
61
|
adantl |
|- ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) -> B <_ N ) |
| 63 |
|
elfzel2 |
|- ( A e. ( 0 ... N ) -> N e. ZZ ) |
| 64 |
63
|
zcnd |
|- ( A e. ( 0 ... N ) -> N e. CC ) |
| 65 |
1
|
zcnd |
|- ( A e. ( 0 ... N ) -> A e. CC ) |
| 66 |
64 65
|
jca |
|- ( A e. ( 0 ... N ) -> ( N e. CC /\ A e. CC ) ) |
| 67 |
66
|
adantr |
|- ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) -> ( N e. CC /\ A e. CC ) ) |
| 68 |
|
npcan |
|- ( ( N e. CC /\ A e. CC ) -> ( ( N - A ) + A ) = N ) |
| 69 |
67 68
|
syl |
|- ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) -> ( ( N - A ) + A ) = N ) |
| 70 |
62 69
|
breqtrrd |
|- ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) -> B <_ ( ( N - A ) + A ) ) |
| 71 |
3
|
zred |
|- ( B e. ( 0 ... N ) -> B e. RR ) |
| 72 |
71
|
adantl |
|- ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) -> B e. RR ) |
| 73 |
63
|
zred |
|- ( A e. ( 0 ... N ) -> N e. RR ) |
| 74 |
1
|
zred |
|- ( A e. ( 0 ... N ) -> A e. RR ) |
| 75 |
73 74
|
resubcld |
|- ( A e. ( 0 ... N ) -> ( N - A ) e. RR ) |
| 76 |
75
|
adantr |
|- ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) -> ( N - A ) e. RR ) |
| 77 |
74
|
adantr |
|- ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) -> A e. RR ) |
| 78 |
72 76 77
|
lesubadd2d |
|- ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) -> ( ( B - ( N - A ) ) <_ A <-> B <_ ( ( N - A ) + A ) ) ) |
| 79 |
70 78
|
mpbird |
|- ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) -> ( B - ( N - A ) ) <_ A ) |
| 80 |
79
|
adantr |
|- ( ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) /\ N < ( A + B ) ) -> ( B - ( N - A ) ) <_ A ) |
| 81 |
|
elfz2nn0 |
|- ( ( B - ( N - A ) ) e. ( 0 ... A ) <-> ( ( B - ( N - A ) ) e. NN0 /\ A e. NN0 /\ ( B - ( N - A ) ) <_ A ) ) |
| 82 |
58 60 80 81
|
syl3anbrc |
|- ( ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) /\ N < ( A + B ) ) -> ( B - ( N - A ) ) e. ( 0 ... A ) ) |
| 83 |
82
|
ex |
|- ( ( A e. ( 0 ... N ) /\ B e. ( 0 ... N ) ) -> ( N < ( A + B ) -> ( B - ( N - A ) ) e. ( 0 ... A ) ) ) |