Metamath Proof Explorer


Theorem fz0addcom

Description: The addition of two members of a finite set of sequential integers starting at 0 is commutative. (Contributed by Alexander van der Vekens, 22-May-2018) (Revised by Alexander van der Vekens, 9-Jun-2018)

Ref Expression
Assertion fz0addcom ( ( 𝐴 ∈ ( 0 ... 𝑁 ) ∧ 𝐵 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) )

Proof

Step Hyp Ref Expression
1 elfznn0 ( 𝐴 ∈ ( 0 ... 𝑁 ) → 𝐴 ∈ ℕ0 )
2 1 nn0cnd ( 𝐴 ∈ ( 0 ... 𝑁 ) → 𝐴 ∈ ℂ )
3 elfznn0 ( 𝐵 ∈ ( 0 ... 𝑁 ) → 𝐵 ∈ ℕ0 )
4 3 nn0cnd ( 𝐵 ∈ ( 0 ... 𝑁 ) → 𝐵 ∈ ℂ )
5 addcom ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) )
6 2 4 5 syl2an ( ( 𝐴 ∈ ( 0 ... 𝑁 ) ∧ 𝐵 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) )