Metamath Proof Explorer


Theorem fz0addcom

Description: The addition of two members of a finite set of sequential integers starting at 0 is commutative. (Contributed by Alexander van der Vekens, 22-May-2018) (Revised by Alexander van der Vekens, 9-Jun-2018)

Ref Expression
Assertion fz0addcom A 0 N B 0 N A + B = B + A

Proof

Step Hyp Ref Expression
1 elfznn0 A 0 N A 0
2 1 nn0cnd A 0 N A
3 elfznn0 B 0 N B 0
4 3 nn0cnd B 0 N B
5 addcom A B A + B = B + A
6 2 4 5 syl2an A 0 N B 0 N A + B = B + A