| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfznn0 | ⊢ ( 𝐴  ∈  ( 0 ... 𝑁 )  →  𝐴  ∈  ℕ0 ) | 
						
							| 2 |  | elfz2nn0 | ⊢ ( 𝐵  ∈  ( 0 ... 𝑁 )  ↔  ( 𝐵  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝐵  ≤  𝑁 ) ) | 
						
							| 3 |  | 3anass | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ↔  ( 𝐴  ∈  ℕ0  ∧  ( 𝐵  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) ) ) | 
						
							| 4 | 3 | simplbi2com | ⊢ ( ( 𝐵  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  ∈  ℕ0  →  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) ) ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( 𝐵  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝐵  ≤  𝑁 )  →  ( 𝐴  ∈  ℕ0  →  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) ) ) | 
						
							| 6 | 2 5 | sylbi | ⊢ ( 𝐵  ∈  ( 0 ... 𝑁 )  →  ( 𝐴  ∈  ℕ0  →  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) ) ) | 
						
							| 7 | 1 6 | mpan9 | ⊢ ( ( 𝐴  ∈  ( 0 ... 𝑁 )  ∧  𝐵  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) ) |