Step |
Hyp |
Ref |
Expression |
1 |
|
elfznn0 |
⊢ ( 𝐴 ∈ ( 0 ... 𝑁 ) → 𝐴 ∈ ℕ0 ) |
2 |
|
elfz2nn0 |
⊢ ( 𝐵 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐵 ≤ 𝑁 ) ) |
3 |
|
3anass |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ↔ ( 𝐴 ∈ ℕ0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) ) |
4 |
3
|
simplbi2com |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐵 ≤ 𝑁 ) → ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) ) |
6 |
2 5
|
sylbi |
⊢ ( 𝐵 ∈ ( 0 ... 𝑁 ) → ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) ) |
7 |
1 6
|
mpan9 |
⊢ ( ( 𝐴 ∈ ( 0 ... 𝑁 ) ∧ 𝐵 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) |