Metamath Proof Explorer


Theorem 2elfz3nn0

Description: If there are two elements in a finite set of sequential integers starting at 0, these two elements as well as the upper bound are nonnegative integers. (Contributed by Alexander van der Vekens, 7-Apr-2018)

Ref Expression
Assertion 2elfz3nn0 ( ( 𝐴 ∈ ( 0 ... 𝑁 ) ∧ 𝐵 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0 ) )

Proof

Step Hyp Ref Expression
1 elfznn0 ( 𝐴 ∈ ( 0 ... 𝑁 ) → 𝐴 ∈ ℕ0 )
2 elfz2nn0 ( 𝐵 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐵 ∈ ℕ0𝑁 ∈ ℕ0𝐵𝑁 ) )
3 3anass ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0 ) ↔ ( 𝐴 ∈ ℕ0 ∧ ( 𝐵 ∈ ℕ0𝑁 ∈ ℕ0 ) ) )
4 3 simplbi2com ( ( 𝐵 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0 ) ) )
5 4 3adant3 ( ( 𝐵 ∈ ℕ0𝑁 ∈ ℕ0𝐵𝑁 ) → ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0 ) ) )
6 2 5 sylbi ( 𝐵 ∈ ( 0 ... 𝑁 ) → ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0 ) ) )
7 1 6 mpan9 ( ( 𝐴 ∈ ( 0 ... 𝑁 ) ∧ 𝐵 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0 ) )