Metamath Proof Explorer


Theorem ssnelpss

Description: A subclass missing a member is a proper subclass. (Contributed by NM, 12-Jan-2002)

Ref Expression
Assertion ssnelpss ABCB¬CAAB

Proof

Step Hyp Ref Expression
1 nelneq2 CB¬CA¬B=A
2 eqcom B=AA=B
3 1 2 sylnib CB¬CA¬A=B
4 dfpss2 ABAB¬A=B
5 4 baibr AB¬A=BAB
6 3 5 imbitrid ABCB¬CAAB