Metamath Proof Explorer


Theorem sspadd2

Description: A projective subspace sum is a superset of its second summand. ( ssun2 analog.) (Contributed by NM, 3-Jan-2012)

Ref Expression
Hypotheses padd0.a A=AtomsK
padd0.p +˙=+𝑃K
Assertion sspadd2 KBXAYAXY+˙X

Proof

Step Hyp Ref Expression
1 padd0.a A=AtomsK
2 padd0.p +˙=+𝑃K
3 ssun2 XYX
4 ssun1 YXYXpA|qYrXpKqjoinKr
5 3 4 sstri XYXpA|qYrXpKqjoinKr
6 eqid K=K
7 eqid joinK=joinK
8 6 7 1 2 paddval KBYAXAY+˙X=YXpA|qYrXpKqjoinKr
9 8 3com23 KBXAYAY+˙X=YXpA|qYrXpKqjoinKr
10 5 9 sseqtrrid KBXAYAXY+˙X