Metamath Proof Explorer


Theorem sspsval

Description: Scalar multiplication on a subspace in terms of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses ssps.y Y=BaseSetW
ssps.s S=𝑠OLDU
ssps.r R=𝑠OLDW
ssps.h H=SubSpU
Assertion sspsval UNrmCVecWHABYARB=ASB

Proof

Step Hyp Ref Expression
1 ssps.y Y=BaseSetW
2 ssps.s S=𝑠OLDU
3 ssps.r R=𝑠OLDW
4 ssps.h H=SubSpU
5 1 2 3 4 ssps UNrmCVecWHR=S×Y
6 5 oveqd UNrmCVecWHARB=AS×YB
7 ovres ABYAS×YB=ASB
8 6 7 sylan9eq UNrmCVecWHABYARB=ASB