Metamath Proof Explorer


Theorem sspmlem

Description: Lemma for sspm and others. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspmlem.y Y=BaseSetW
sspmlem.h H=SubSpU
sspmlem.1 UNrmCVecWHxYyYxFy=xGy
sspmlem.2 WNrmCVecF:Y×YR
sspmlem.3 UNrmCVecG:BaseSetU×BaseSetUS
Assertion sspmlem UNrmCVecWHF=GY×Y

Proof

Step Hyp Ref Expression
1 sspmlem.y Y=BaseSetW
2 sspmlem.h H=SubSpU
3 sspmlem.1 UNrmCVecWHxYyYxFy=xGy
4 sspmlem.2 WNrmCVecF:Y×YR
5 sspmlem.3 UNrmCVecG:BaseSetU×BaseSetUS
6 ovres xYyYxGY×Yy=xGy
7 6 adantl UNrmCVecWHxYyYxGY×Yy=xGy
8 3 7 eqtr4d UNrmCVecWHxYyYxFy=xGY×Yy
9 8 ralrimivva UNrmCVecWHxYyYxFy=xGY×Yy
10 eqid Y×Y=Y×Y
11 9 10 jctil UNrmCVecWHY×Y=Y×YxYyYxFy=xGY×Yy
12 2 sspnv UNrmCVecWHWNrmCVec
13 ffn F:Y×YRFFnY×Y
14 12 4 13 3syl UNrmCVecWHFFnY×Y
15 5 ffnd UNrmCVecGFnBaseSetU×BaseSetU
16 15 adantr UNrmCVecWHGFnBaseSetU×BaseSetU
17 eqid BaseSetU=BaseSetU
18 17 1 2 sspba UNrmCVecWHYBaseSetU
19 xpss12 YBaseSetUYBaseSetUY×YBaseSetU×BaseSetU
20 18 18 19 syl2anc UNrmCVecWHY×YBaseSetU×BaseSetU
21 fnssres GFnBaseSetU×BaseSetUY×YBaseSetU×BaseSetUGY×YFnY×Y
22 16 20 21 syl2anc UNrmCVecWHGY×YFnY×Y
23 eqfnov FFnY×YGY×YFnY×YF=GY×YY×Y=Y×YxYyYxFy=xGY×Yy
24 14 22 23 syl2anc UNrmCVecWHF=GY×YY×Y=Y×YxYyYxFy=xGY×Yy
25 11 24 mpbird UNrmCVecWHF=GY×Y