Description: Lemma for sspm and others. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sspmlem.y | |
|
sspmlem.h | |
||
sspmlem.1 | |
||
sspmlem.2 | |
||
sspmlem.3 | |
||
Assertion | sspmlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspmlem.y | |
|
2 | sspmlem.h | |
|
3 | sspmlem.1 | |
|
4 | sspmlem.2 | |
|
5 | sspmlem.3 | |
|
6 | ovres | |
|
7 | 6 | adantl | |
8 | 3 7 | eqtr4d | |
9 | 8 | ralrimivva | |
10 | eqid | |
|
11 | 9 10 | jctil | |
12 | 2 | sspnv | |
13 | ffn | |
|
14 | 12 4 13 | 3syl | |
15 | 5 | ffnd | |
16 | 15 | adantr | |
17 | eqid | |
|
18 | 17 1 2 | sspba | |
19 | xpss12 | |
|
20 | 18 18 19 | syl2anc | |
21 | fnssres | |
|
22 | 16 20 21 | syl2anc | |
23 | eqfnov | |
|
24 | 14 22 23 | syl2anc | |
25 | 11 24 | mpbird | |