Metamath Proof Explorer


Theorem sspm

Description: Vector subtraction on a subspace is a restriction of vector subtraction on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspm.y Y=BaseSetW
sspm.m M=-vU
sspm.l L=-vW
sspm.h H=SubSpU
Assertion sspm UNrmCVecWHL=MY×Y

Proof

Step Hyp Ref Expression
1 sspm.y Y=BaseSetW
2 sspm.m M=-vU
3 sspm.l L=-vW
4 sspm.h H=SubSpU
5 1 2 3 4 sspmval UNrmCVecWHxYyYxLy=xMy
6 1 3 nvmf WNrmCVecL:Y×YY
7 eqid BaseSetU=BaseSetU
8 7 2 nvmf UNrmCVecM:BaseSetU×BaseSetUBaseSetU
9 1 4 5 6 8 sspmlem UNrmCVecWHL=MY×Y