Metamath Proof Explorer


Theorem sspz

Description: The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspz.z Z = 0 vec U
sspz.q Q = 0 vec W
sspz.h H = SubSp U
Assertion sspz U NrmCVec W H Q = Z

Proof

Step Hyp Ref Expression
1 sspz.z Z = 0 vec U
2 sspz.q Q = 0 vec W
3 sspz.h H = SubSp U
4 3 sspnv U NrmCVec W H W NrmCVec
5 eqid BaseSet W = BaseSet W
6 5 2 nvzcl W NrmCVec Q BaseSet W
7 6 6 jca W NrmCVec Q BaseSet W Q BaseSet W
8 4 7 syl U NrmCVec W H Q BaseSet W Q BaseSet W
9 eqid - v U = - v U
10 eqid - v W = - v W
11 5 9 10 3 sspmval U NrmCVec W H Q BaseSet W Q BaseSet W Q - v W Q = Q - v U Q
12 8 11 mpdan U NrmCVec W H Q - v W Q = Q - v U Q
13 5 10 2 nvmid W NrmCVec Q BaseSet W Q - v W Q = Q
14 4 6 13 syl2anc2 U NrmCVec W H Q - v W Q = Q
15 eqid BaseSet U = BaseSet U
16 15 5 3 sspba U NrmCVec W H BaseSet W BaseSet U
17 4 6 syl U NrmCVec W H Q BaseSet W
18 16 17 sseldd U NrmCVec W H Q BaseSet U
19 15 9 1 nvmid U NrmCVec Q BaseSet U Q - v U Q = Z
20 18 19 syldan U NrmCVec W H Q - v U Q = Z
21 12 14 20 3eqtr3d U NrmCVec W H Q = Z