| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sspz.z |
|- Z = ( 0vec ` U ) |
| 2 |
|
sspz.q |
|- Q = ( 0vec ` W ) |
| 3 |
|
sspz.h |
|- H = ( SubSp ` U ) |
| 4 |
3
|
sspnv |
|- ( ( U e. NrmCVec /\ W e. H ) -> W e. NrmCVec ) |
| 5 |
|
eqid |
|- ( BaseSet ` W ) = ( BaseSet ` W ) |
| 6 |
5 2
|
nvzcl |
|- ( W e. NrmCVec -> Q e. ( BaseSet ` W ) ) |
| 7 |
6 6
|
jca |
|- ( W e. NrmCVec -> ( Q e. ( BaseSet ` W ) /\ Q e. ( BaseSet ` W ) ) ) |
| 8 |
4 7
|
syl |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( Q e. ( BaseSet ` W ) /\ Q e. ( BaseSet ` W ) ) ) |
| 9 |
|
eqid |
|- ( -v ` U ) = ( -v ` U ) |
| 10 |
|
eqid |
|- ( -v ` W ) = ( -v ` W ) |
| 11 |
5 9 10 3
|
sspmval |
|- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( Q e. ( BaseSet ` W ) /\ Q e. ( BaseSet ` W ) ) ) -> ( Q ( -v ` W ) Q ) = ( Q ( -v ` U ) Q ) ) |
| 12 |
8 11
|
mpdan |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( Q ( -v ` W ) Q ) = ( Q ( -v ` U ) Q ) ) |
| 13 |
5 10 2
|
nvmid |
|- ( ( W e. NrmCVec /\ Q e. ( BaseSet ` W ) ) -> ( Q ( -v ` W ) Q ) = Q ) |
| 14 |
4 6 13
|
syl2anc2 |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( Q ( -v ` W ) Q ) = Q ) |
| 15 |
|
eqid |
|- ( BaseSet ` U ) = ( BaseSet ` U ) |
| 16 |
15 5 3
|
sspba |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( BaseSet ` W ) C_ ( BaseSet ` U ) ) |
| 17 |
4 6
|
syl |
|- ( ( U e. NrmCVec /\ W e. H ) -> Q e. ( BaseSet ` W ) ) |
| 18 |
16 17
|
sseldd |
|- ( ( U e. NrmCVec /\ W e. H ) -> Q e. ( BaseSet ` U ) ) |
| 19 |
15 9 1
|
nvmid |
|- ( ( U e. NrmCVec /\ Q e. ( BaseSet ` U ) ) -> ( Q ( -v ` U ) Q ) = Z ) |
| 20 |
18 19
|
syldan |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( Q ( -v ` U ) Q ) = Z ) |
| 21 |
12 14 20
|
3eqtr3d |
|- ( ( U e. NrmCVec /\ W e. H ) -> Q = Z ) |