| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sspn.y |
|
| 2 |
|
sspn.n |
|
| 3 |
|
sspn.m |
|
| 4 |
|
sspn.h |
|
| 5 |
4
|
sspnv |
|
| 6 |
1 3
|
nvf |
|
| 7 |
5 6
|
syl |
|
| 8 |
7
|
ffnd |
|
| 9 |
|
eqid |
|
| 10 |
9 2
|
nvf |
|
| 11 |
10
|
ffnd |
|
| 12 |
11
|
adantr |
|
| 13 |
9 1 4
|
sspba |
|
| 14 |
|
fnssres |
|
| 15 |
12 13 14
|
syl2anc |
|
| 16 |
10
|
ffund |
|
| 17 |
16
|
funresd |
|
| 18 |
17
|
ad2antrr |
|
| 19 |
|
fnresdm |
|
| 20 |
8 19
|
syl |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
21 22 23 24 2 3 4
|
isssp |
|
| 26 |
25
|
simplbda |
|
| 27 |
26
|
simp3d |
|
| 28 |
|
ssres |
|
| 29 |
27 28
|
syl |
|
| 30 |
20 29
|
eqsstrrd |
|
| 31 |
30
|
adantr |
|
| 32 |
6
|
fdmd |
|
| 33 |
32
|
eleq2d |
|
| 34 |
33
|
biimpar |
|
| 35 |
5 34
|
sylan |
|
| 36 |
|
funssfv |
|
| 37 |
18 31 35 36
|
syl3anc |
|
| 38 |
37
|
eqcomd |
|
| 39 |
8 15 38
|
eqfnfvd |
|