Step |
Hyp |
Ref |
Expression |
1 |
|
sspn.y |
|
2 |
|
sspn.n |
|
3 |
|
sspn.m |
|
4 |
|
sspn.h |
|
5 |
4
|
sspnv |
|
6 |
1 3
|
nvf |
|
7 |
5 6
|
syl |
|
8 |
7
|
ffnd |
|
9 |
|
eqid |
|
10 |
9 2
|
nvf |
|
11 |
10
|
ffnd |
|
12 |
11
|
adantr |
|
13 |
9 1 4
|
sspba |
|
14 |
|
fnssres |
|
15 |
12 13 14
|
syl2anc |
|
16 |
10
|
ffund |
|
17 |
|
funres |
|
18 |
16 17
|
syl |
|
19 |
18
|
ad2antrr |
|
20 |
|
fnresdm |
|
21 |
8 20
|
syl |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
22 23 24 25 2 3 4
|
isssp |
|
27 |
26
|
simplbda |
|
28 |
27
|
simp3d |
|
29 |
|
ssres |
|
30 |
28 29
|
syl |
|
31 |
21 30
|
eqsstrrd |
|
32 |
31
|
adantr |
|
33 |
6
|
fdmd |
|
34 |
33
|
eleq2d |
|
35 |
34
|
biimpar |
|
36 |
5 35
|
sylan |
|
37 |
|
funssfv |
|
38 |
19 32 36 37
|
syl3anc |
|
39 |
38
|
eqcomd |
|
40 |
8 15 39
|
eqfnfvd |
|