Metamath Proof Explorer


Theorem sspnv

Description: A subspace is a normed complex vector space. (Contributed by NM, 27-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypothesis sspnv.h H=SubSpU
Assertion sspnv UNrmCVecWHWNrmCVec

Proof

Step Hyp Ref Expression
1 sspnv.h H=SubSpU
2 eqid +vU=+vU
3 eqid +vW=+vW
4 eqid 𝑠OLDU=𝑠OLDU
5 eqid 𝑠OLDW=𝑠OLDW
6 eqid normCVU=normCVU
7 eqid normCVW=normCVW
8 2 3 4 5 6 7 1 isssp UNrmCVecWHWNrmCVec+vW+vU𝑠OLDW𝑠OLDUnormCVWnormCVU
9 8 simprbda UNrmCVecWHWNrmCVec