Metamath Proof Explorer


Theorem isssp

Description: The predicate "is a subspace." (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses isssp.g G=+vU
isssp.f F=+vW
isssp.s S=𝑠OLDU
isssp.r R=𝑠OLDW
isssp.n N=normCVU
isssp.m M=normCVW
isssp.h H=SubSpU
Assertion isssp UNrmCVecWHWNrmCVecFGRSMN

Proof

Step Hyp Ref Expression
1 isssp.g G=+vU
2 isssp.f F=+vW
3 isssp.s S=𝑠OLDU
4 isssp.r R=𝑠OLDW
5 isssp.n N=normCVU
6 isssp.m M=normCVW
7 isssp.h H=SubSpU
8 1 3 5 7 sspval UNrmCVecH=wNrmCVec|+vwG𝑠OLDwSnormCVwN
9 8 eleq2d UNrmCVecWHWwNrmCVec|+vwG𝑠OLDwSnormCVwN
10 fveq2 w=W+vw=+vW
11 10 2 eqtr4di w=W+vw=F
12 11 sseq1d w=W+vwGFG
13 fveq2 w=W𝑠OLDw=𝑠OLDW
14 13 4 eqtr4di w=W𝑠OLDw=R
15 14 sseq1d w=W𝑠OLDwSRS
16 fveq2 w=WnormCVw=normCVW
17 16 6 eqtr4di w=WnormCVw=M
18 17 sseq1d w=WnormCVwNMN
19 12 15 18 3anbi123d w=W+vwG𝑠OLDwSnormCVwNFGRSMN
20 19 elrab WwNrmCVec|+vwG𝑠OLDwSnormCVwNWNrmCVecFGRSMN
21 9 20 bitrdi UNrmCVecWHWNrmCVecFGRSMN