Metamath Proof Explorer


Theorem nvf

Description: Mapping for the norm function. (Contributed by NM, 11-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvf.1 X=BaseSetU
nvf.6 N=normCVU
Assertion nvf UNrmCVecN:X

Proof

Step Hyp Ref Expression
1 nvf.1 X=BaseSetU
2 nvf.6 N=normCVU
3 eqid +vU=+vU
4 eqid 𝑠OLDU=𝑠OLDU
5 eqid 0vecU=0vecU
6 1 3 4 5 2 nvi UNrmCVec+vU𝑠OLDUCVecOLDN:XxXNx=0x=0vecUyNy𝑠OLDUx=yNxyXNx+vUyNx+Ny
7 6 simp2d UNrmCVecN:X