Metamath Proof Explorer


Theorem nvmid

Description: A vector minus itself is the zero vector. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvmeq0.1 X=BaseSetU
nvmeq0.3 M=-vU
nvmeq0.5 Z=0vecU
Assertion nvmid UNrmCVecAXAMA=Z

Proof

Step Hyp Ref Expression
1 nvmeq0.1 X=BaseSetU
2 nvmeq0.3 M=-vU
3 nvmeq0.5 Z=0vecU
4 eqid A=A
5 1 2 3 nvmeq0 UNrmCVecAXAXAMA=ZA=A
6 5 3anidm23 UNrmCVecAXAMA=ZA=A
7 4 6 mpbiri UNrmCVecAXAMA=Z