Metamath Proof Explorer


Theorem sspmlem

Description: Lemma for sspm and others. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspmlem.y 𝑌 = ( BaseSet ‘ 𝑊 )
sspmlem.h 𝐻 = ( SubSp ‘ 𝑈 )
sspmlem.1 ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐺 𝑦 ) )
sspmlem.2 ( 𝑊 ∈ NrmCVec → 𝐹 : ( 𝑌 × 𝑌 ) ⟶ 𝑅 )
sspmlem.3 ( 𝑈 ∈ NrmCVec → 𝐺 : ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ⟶ 𝑆 )
Assertion sspmlem ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 sspmlem.y 𝑌 = ( BaseSet ‘ 𝑊 )
2 sspmlem.h 𝐻 = ( SubSp ‘ 𝑈 )
3 sspmlem.1 ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐺 𝑦 ) )
4 sspmlem.2 ( 𝑊 ∈ NrmCVec → 𝐹 : ( 𝑌 × 𝑌 ) ⟶ 𝑅 )
5 sspmlem.3 ( 𝑈 ∈ NrmCVec → 𝐺 : ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ⟶ 𝑆 )
6 ovres ( ( 𝑥𝑌𝑦𝑌 ) → ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝐺 𝑦 ) )
7 6 adantl ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝐺 𝑦 ) )
8 3 7 eqtr4d ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) ∧ ( 𝑥𝑌𝑦𝑌 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) )
9 8 ralrimivva ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → ∀ 𝑥𝑌𝑦𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) )
10 eqid ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 )
11 9 10 jctil ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → ( ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) ∧ ∀ 𝑥𝑌𝑦𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) )
12 2 sspnv ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → 𝑊 ∈ NrmCVec )
13 ffn ( 𝐹 : ( 𝑌 × 𝑌 ) ⟶ 𝑅𝐹 Fn ( 𝑌 × 𝑌 ) )
14 12 4 13 3syl ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → 𝐹 Fn ( 𝑌 × 𝑌 ) )
15 5 ffnd ( 𝑈 ∈ NrmCVec → 𝐺 Fn ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) )
16 15 adantr ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → 𝐺 Fn ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) )
17 eqid ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 )
18 17 1 2 sspba ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) )
19 xpss12 ( ( 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ∧ 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) → ( 𝑌 × 𝑌 ) ⊆ ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) )
20 18 18 19 syl2anc ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → ( 𝑌 × 𝑌 ) ⊆ ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) )
21 fnssres ( ( 𝐺 Fn ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ∧ ( 𝑌 × 𝑌 ) ⊆ ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) → ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) Fn ( 𝑌 × 𝑌 ) )
22 16 20 21 syl2anc ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) Fn ( 𝑌 × 𝑌 ) )
23 eqfnov ( ( 𝐹 Fn ( 𝑌 × 𝑌 ) ∧ ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) Fn ( 𝑌 × 𝑌 ) ) → ( 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ↔ ( ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) ∧ ∀ 𝑥𝑌𝑦𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) ) )
24 14 22 23 syl2anc ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → ( 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ↔ ( ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) ∧ ∀ 𝑥𝑌𝑦𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) ) )
25 11 24 mpbird ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) )