Step |
Hyp |
Ref |
Expression |
1 |
|
sspm.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
2 |
|
sspm.m |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
3 |
|
sspm.l |
⊢ 𝐿 = ( −𝑣 ‘ 𝑊 ) |
4 |
|
sspm.h |
⊢ 𝐻 = ( SubSp ‘ 𝑈 ) |
5 |
4
|
sspnv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
6 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
7 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) |
8 |
1 7
|
nvscl |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑌 ) → ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) |
9 |
6 8
|
mp3an2 |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝐵 ∈ 𝑌 ) → ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) |
10 |
9
|
ex |
⊢ ( 𝑊 ∈ NrmCVec → ( 𝐵 ∈ 𝑌 → ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) ) |
11 |
5 10
|
syl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐵 ∈ 𝑌 → ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) ) |
12 |
11
|
anim2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 ∈ 𝑌 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) ) ) |
13 |
12
|
imp |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∈ 𝑌 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) ) |
14 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
15 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) |
16 |
1 14 15 4
|
sspgval |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) ) → ( 𝐴 ( +𝑣 ‘ 𝑊 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) ) |
17 |
13 16
|
syldan |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ( +𝑣 ‘ 𝑊 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) ) |
18 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
19 |
1 18 7 4
|
sspsval |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑌 ) ) → ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) = ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) |
20 |
6 19
|
mpanr1 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐵 ∈ 𝑌 ) → ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) = ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) |
21 |
20
|
adantrl |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) = ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) |
22 |
21
|
oveq2d |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
23 |
17 22
|
eqtrd |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ( +𝑣 ‘ 𝑊 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
24 |
1 15 7 3
|
nvmval |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 𝐿 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑊 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) ) |
25 |
24
|
3expb |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐿 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑊 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) ) |
26 |
5 25
|
sylan |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐿 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑊 ) ( - 1 ( ·𝑠OLD ‘ 𝑊 ) 𝐵 ) ) ) |
27 |
|
eqid |
⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) |
28 |
27 1 4
|
sspba |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) |
29 |
28
|
sseld |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐴 ∈ 𝑌 → 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ) ) |
30 |
28
|
sseld |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐵 ∈ 𝑌 → 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) |
31 |
29 30
|
anim12d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) ) |
32 |
31
|
imp |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) |
33 |
27 14 18 2
|
nvmval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
34 |
33
|
3expb |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
35 |
34
|
adantlr |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
36 |
32 35
|
syldan |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
37 |
23 26 36
|
3eqtr4d |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐿 𝐵 ) = ( 𝐴 𝑀 𝐵 ) ) |