Metamath Proof Explorer


Theorem sst0

Description: A topology finer than a T_0 topology is T_0. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis t1sep.1 X=J
Assertion sst0 JKol2KTopOnXJKKKol2

Proof

Step Hyp Ref Expression
1 t1sep.1 X=J
2 t0top JKol2JTop
3 cnt0 JKol2IX:X1-1XIXKCnJKKol2
4 1 2 3 sshauslem JKol2KTopOnXJKKKol2