| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntop1 |
|
| 2 |
1
|
3ad2ant3 |
|
| 3 |
|
simpl3 |
|
| 4 |
|
cnima |
|
| 5 |
3 4
|
sylan |
|
| 6 |
|
eleq2 |
|
| 7 |
|
eleq2 |
|
| 8 |
6 7
|
bibi12d |
|
| 9 |
8
|
rspcv |
|
| 10 |
5 9
|
syl |
|
| 11 |
|
simprl |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
12 13
|
cnf |
|
| 15 |
3 14
|
syl |
|
| 16 |
15
|
ffnd |
|
| 17 |
|
elpreima |
|
| 18 |
16 17
|
syl |
|
| 19 |
11 18
|
mpbirand |
|
| 20 |
|
simprr |
|
| 21 |
|
elpreima |
|
| 22 |
16 21
|
syl |
|
| 23 |
20 22
|
mpbirand |
|
| 24 |
19 23
|
bibi12d |
|
| 25 |
24
|
adantr |
|
| 26 |
10 25
|
sylibd |
|
| 27 |
26
|
ralrimdva |
|
| 28 |
|
simpl1 |
|
| 29 |
15 11
|
ffvelcdmd |
|
| 30 |
15 20
|
ffvelcdmd |
|
| 31 |
13
|
t0sep |
|
| 32 |
28 29 30 31
|
syl12anc |
|
| 33 |
27 32
|
syld |
|
| 34 |
|
simpl2 |
|
| 35 |
15
|
fdmd |
|
| 36 |
|
f1dm |
|
| 37 |
34 36
|
syl |
|
| 38 |
35 37
|
eqtr3d |
|
| 39 |
11 38
|
eleqtrd |
|
| 40 |
20 38
|
eleqtrd |
|
| 41 |
|
f1fveq |
|
| 42 |
34 39 40 41
|
syl12anc |
|
| 43 |
33 42
|
sylibd |
|
| 44 |
43
|
ralrimivva |
|
| 45 |
12
|
ist0 |
|
| 46 |
2 44 45
|
sylanbrc |
|