Metamath Proof Explorer


Theorem sstr2

Description: Transitivity of subclass relationship. Exercise 5 of TakeutiZaring p. 17. (Contributed by NM, 24-Jun-1993) (Proof shortened by Andrew Salmon, 14-Jun-2011)

Ref Expression
Assertion sstr2 ABBCAC

Proof

Step Hyp Ref Expression
1 ssel ABxAxB
2 1 imim1d ABxBxCxAxC
3 2 alimdv ABxxBxCxxAxC
4 dfss2 BCxxBxC
5 dfss2 ACxxAxC
6 3 4 5 3imtr4g ABBCAC