Metamath Proof Explorer


Theorem sstskm

Description: Being a part of ( tarskiMapA ) . (Contributed by FL, 17-Apr-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion sstskm A V B tarskiMap A x Tarski A x B x

Proof

Step Hyp Ref Expression
1 tskmval A V tarskiMap A = x Tarski | A x
2 df-rab x Tarski | A x = x | x Tarski A x
3 2 inteqi x Tarski | A x = x | x Tarski A x
4 1 3 eqtrdi A V tarskiMap A = x | x Tarski A x
5 4 sseq2d A V B tarskiMap A B x | x Tarski A x
6 impexp x Tarski A x B x x Tarski A x B x
7 6 albii x x Tarski A x B x x x Tarski A x B x
8 ssintab B x | x Tarski A x x x Tarski A x B x
9 df-ral x Tarski A x B x x x Tarski A x B x
10 7 8 9 3bitr4i B x | x Tarski A x x Tarski A x B x
11 5 10 bitrdi A V B tarskiMap A x Tarski A x B x