Metamath Proof Explorer


Theorem sstskm

Description: Being a part of ( tarskiMapA ) . (Contributed by FL, 17-Apr-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion sstskm AVBtarskiMapAxTarskiAxBx

Proof

Step Hyp Ref Expression
1 tskmval AVtarskiMapA=xTarski|Ax
2 df-rab xTarski|Ax=x|xTarskiAx
3 2 inteqi xTarski|Ax=x|xTarskiAx
4 1 3 eqtrdi AVtarskiMapA=x|xTarskiAx
5 4 sseq2d AVBtarskiMapABx|xTarskiAx
6 impexp xTarskiAxBxxTarskiAxBx
7 6 albii xxTarskiAxBxxxTarskiAxBx
8 ssintab Bx|xTarskiAxxxTarskiAxBx
9 df-ral xTarskiAxBxxxTarskiAxBx
10 7 8 9 3bitr4i Bx|xTarskiAxxTarskiAxBx
11 5 10 bitrdi AVBtarskiMapAxTarskiAxBx