Description: Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssuniint.x | |
|
ssuniint.a | |
||
ssuniint.b | |
||
Assertion | ssuniint | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssuniint.x | |
|
2 | ssuniint.a | |
|
3 | ssuniint.b | |
|
4 | 1 2 3 | elintd | |
5 | elssuni | |
|
6 | 4 5 | syl | |