Metamath Proof Explorer


Theorem ssuniint

Description: Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses ssuniint.x xφ
ssuniint.a φAV
ssuniint.b φxBAx
Assertion ssuniint φAB

Proof

Step Hyp Ref Expression
1 ssuniint.x xφ
2 ssuniint.a φAV
3 ssuniint.b φxBAx
4 1 2 3 elintd φAB
5 elssuni ABAB
6 4 5 syl φAB