Metamath Proof Explorer


Theorem staffn

Description: The functionalization is equal to the original function, if it is a function on the right base set. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses staffval.b B=BaseR
staffval.i ˙=*R
staffval.f ˙=𝑟𝑓R
Assertion staffn ˙FnB˙=˙

Proof

Step Hyp Ref Expression
1 staffval.b B=BaseR
2 staffval.i ˙=*R
3 staffval.f ˙=𝑟𝑓R
4 1 2 3 staffval ˙=xB˙x
5 dffn5 ˙FnB˙=xB˙x
6 5 biimpi ˙FnB˙=xB˙x
7 4 6 eqtr4id ˙FnB˙=˙