Metamath Proof Explorer


Theorem stdbdmetval

Description: Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypothesis stdbdmet.1 D=xX,yXifxCyRxCyR
Assertion stdbdmetval RVAXBXADB=ifACBRACBR

Proof

Step Hyp Ref Expression
1 stdbdmet.1 D=xX,yXifxCyRxCyR
2 ovex ACBV
3 ifexg ACBVRVifACBRACBRV
4 2 3 mpan RVifACBRACBRV
5 oveq12 x=Ay=BxCy=ACB
6 5 breq1d x=Ay=BxCyRACBR
7 6 5 ifbieq1d x=Ay=BifxCyRxCyR=ifACBRACBR
8 7 1 ovmpoga AXBXifACBRACBRVADB=ifACBRACBR
9 4 8 syl3an3 AXBXRVADB=ifACBRACBR
10 9 3comr RVAXBXADB=ifACBRACBR