Metamath Proof Explorer


Theorem strle2

Description: Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypotheses strle1.i I
strle1.a A=I
strle2.j I<J
strle2.k J
strle2.b B=J
Assertion strle2 AXBYStructIJ

Proof

Step Hyp Ref Expression
1 strle1.i I
2 strle1.a A=I
3 strle2.j I<J
4 strle2.k J
5 strle2.b B=J
6 df-pr AXBY=AXBY
7 1 2 strle1 AXStructII
8 4 5 strle1 BYStructJJ
9 7 8 3 strleun AXBYStructIJ
10 6 9 eqbrtri AXBYStructIJ