Metamath Proof Explorer


Theorem strlem3

Description: Lemma for strong state theorem: the function S , that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. This lemma restates the hypotheses in a more convenient form to work with. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses strlem3.1 S=xCnormprojxu2
strlem3.2 φuABnormu=1
strlem3.3 AC
strlem3.4 BC
Assertion strlem3 φSStates

Proof

Step Hyp Ref Expression
1 strlem3.1 S=xCnormprojxu2
2 strlem3.2 φuABnormu=1
3 strlem3.3 AC
4 strlem3.4 BC
5 eldifi uABuA
6 3 cheli uAu
7 5 6 syl uABu
8 1 strlem3a unormu=1SStates
9 7 8 sylan uABnormu=1SStates
10 2 9 sylbi φSStates