Metamath Proof Explorer


Theorem subeq0

Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999)

Ref Expression
Assertion subeq0 ABAB=0A=B

Proof

Step Hyp Ref Expression
1 subid BBB=0
2 1 adantl ABBB=0
3 2 eqeq2d ABAB=BBAB=0
4 subcan2 ABBAB=BBA=B
5 4 3anidm23 ABAB=BBA=B
6 3 5 bitr3d ABAB=0A=B