Metamath Proof Explorer


Theorem subexsub

Description: A subtraction law: Exchanging the subtrahend and the result of the subtraction. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses addlsub.a φA
addlsub.b φB
addlsub.c φC
Assertion subexsub φA=CBB=CA

Proof

Step Hyp Ref Expression
1 addlsub.a φA
2 addlsub.b φB
3 addlsub.c φC
4 1 2 3 addlsub φA+B=CA=CB
5 1 2 3 addrsub φA+B=CB=CA
6 4 5 bitr3d φA=CBB=CA