Metamath Proof Explorer


Theorem subgrprop

Description: The properties of a subgraph. (Contributed by AV, 19-Nov-2020)

Ref Expression
Hypotheses issubgr.v V=VtxS
issubgr.a A=VtxG
issubgr.i I=iEdgS
issubgr.b B=iEdgG
issubgr.e E=EdgS
Assertion subgrprop SSubGraphGVAI=BdomIE𝒫V

Proof

Step Hyp Ref Expression
1 issubgr.v V=VtxS
2 issubgr.a A=VtxG
3 issubgr.i I=iEdgS
4 issubgr.b B=iEdgG
5 issubgr.e E=EdgS
6 subgrv SSubGraphGSVGV
7 1 2 3 4 5 issubgr GVSVSSubGraphGVAI=BdomIE𝒫V
8 7 biimpd GVSVSSubGraphGVAI=BdomIE𝒫V
9 8 ancoms SVGVSSubGraphGVAI=BdomIE𝒫V
10 6 9 mpcom SSubGraphGVAI=BdomIE𝒫V