Metamath Proof Explorer


Theorem subid1d

Description: Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis negidd.1 φA
Assertion subid1d φA0=A

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 subid1 AA0=A
3 1 2 syl φA0=A