Metamath Proof Explorer


Theorem submbas

Description: The base set of a submonoid. (Contributed by Stefan O'Rear, 15-Jun-2015)

Ref Expression
Hypothesis submmnd.h H=M𝑠S
Assertion submbas SSubMndMS=BaseH

Proof

Step Hyp Ref Expression
1 submmnd.h H=M𝑠S
2 eqid BaseM=BaseM
3 2 submss SSubMndMSBaseM
4 1 2 ressbas2 SBaseMS=BaseH
5 3 4 syl SSubMndMS=BaseH