Metamath Proof Explorer


Theorem submcl

Description: Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypothesis submcl.p +˙=+M
Assertion submcl SSubMndMXSYSX+˙YS

Proof

Step Hyp Ref Expression
1 submcl.p +˙=+M
2 submrcl SSubMndMMMnd
3 eqid BaseM=BaseM
4 eqid 0M=0M
5 3 4 1 issubm MMndSSubMndMSBaseM0MSxSySx+˙yS
6 2 5 syl SSubMndMSSubMndMSBaseM0MSxSySx+˙yS
7 6 ibi SSubMndMSBaseM0MSxSySx+˙yS
8 7 simp3d SSubMndMxSySx+˙yS
9 ovrspc2v XSYSxSySx+˙ySX+˙YS
10 8 9 sylan2 XSYSSSubMndMX+˙YS
11 10 ancoms SSubMndMXSYSX+˙YS
12 11 3impb SSubMndMXSYSX+˙YS